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EQUATION OF FUSION Cl'RV£ 

rdJ.tlYt.·ly high melting point. For elements of low 
mc,':1:1:! point, such as the molecular crystals, applicabil­
lty ,~ the :\Iurnaghan equation of state has not been 
veruted: hence the conclusions are not necessarily 

. v:J.hi illr elements of this class, for which the Simon 
'~l:'l~Hio n was originally devised. 

fhe iundamental fusion criterion on this theory is 
Eq. ,i) corresponding to the Lindemann law, from 

' wl:ich the Simon equation follows through choice of 
t!::e :\Iurnaghan equation (or one of similar analytic 
iurm) as the equation of state of the solid. However, a 
treurment analogous to that given here, based on a 
Birch. equa tionl9 (also derived from the theory of finite 
;5t:ain) or other justifiable equation of state, will not 
necesS3rily yield the analytic form of Eq. (31), but 
shedd be capable of representing the experimental 
bcts as well, if Eq. (7) is accepted. Further, the 
evaluation (21) of the Simon exponent implies some 

. dependence on the pressure range covered by the fusion 

19 F. Birch, Phys. Rev. iI, 809 (1947). 

curve, and the evaluation of the Simon coefficient shows 
a dependence on the arbitrary position of the ori.~in 
of the fusion curve. These considerations suggest t ha L 

the Simon equation has more the character of an 
interpolation formula than a basic fusion equation, at 
least for the elements of higher melting temperature. 

The fact that the Simon equation can be deri\"cd so 
directly from the generalized Lindemann la\\' of I, [or 
low pressure, justifies to some extent the step of 
extrapolating the law, for high pressure, to obtain the 
fusion curve on the basis of the Thomas-Fermi equation 
of state.20 
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An evaluation of the Griinesisen parameter (or constant) from the equation of state of a solid has been 
obtained by Druyvesteyn and :\Ieyering on the basis of the theory of finite strain. The result differs (by -~) 
from the corresponding evaluation on the Debye theory, as given by Lorentz and by Slater. The value of 
Druyvesteyn and :\Ieyering is derived here without use of the formal theory of finite strain, and shown to 
correspond physically to a modd uf independent pairs of nearest neighbor atoms, rather than to the Debye 
model of coupled atomic vibrations. This fact resolves a paradox raised by Dugdale and MacDonald in 
connection with an ideal harmonic solid, and ascribed by them to neglect of finite strain. The presence of a 
state of finite hydrostatic pressure, upon which elastic waves or pressure changes of infinitesimal amplitude 
are impressed, is taken into account explicitly by means of Murnaghan's theory of finite strain, to:obtain 
the Griineisen parameter, as t:valuated from the equation of state, on the Debye model and for a 
Druyvesteyn-:-'leyering solid. The results are identical in the two cases with the corresponding values 
obtained without use of the formal theory of finite strain. Hence, no basis exists for the modification at 
finite pressure in the Griineisen parameter from the Debye theory, as proposed by Dugdale and MacDonald. 
A comparison of average values over a relatively large number of elements, of Griineisen constants as 
evaluated from Griineisen's law and from the equation of state on the Debye model, shows excellent 
agreement at normal and at melting temperature. 

1. INTRODUCTION 

FRO~1 results of Lorentzl and Slater,2.3 the Grilneisen 
parameter (or constant) 'YD of an isotropic solid 

can be evaluated from its equation of state as 

'YD=-j-HJPjJV)-l(VeVP, JV 2), (1) 

where P is the pressure corresponding to the volume 
V. As indicated by the subscript D, this result is based 

• Work sponsored by the 'C. S. Atomic Energy Commission. 
1 H. A. Lorentz, Proc. Rov. Acad. Amsterdam 19, 1324 (1916). 
J J. C. Slater, Phys. Rev. '57, 744 (1940). 
I J. C. Slater, Introduclil)1l to Cltonicai Physics (~lcGraw-Hill 

Book Company, Inc., New York, 1939), pp. 238, 394, 451. 

.Q!! the Debye theory ; it presupposes that the Poisson 
~f the solid is constant. In a number of papcrsl 6 

concerned with the fusion curve and the behavior oi 
solids under pressure, the author has assumed that the 
evaluation (1) of the Griineisen parameter is valid at 
high pressure, for the Debye theory. 

The question can be raised whether the theory oi 

• J. J. Gilvarry, this issue [Phys. Rev. 102, 308 (1950)J, 
referred to hereafter as I. 

5 J. J. Gilvarry, this issue [Phys. Rev. 102, 317 (1956)J, 
referred to hereafter as II. 

I J. J. Gilvarry, preceding paper [phys. Rev 102,325 (1956)J, 
referred to hereafter as III. 
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finite strain may not modify Eq. (1) at high pressure. 
On the basis of Duhem's fonnulation 7 of the theory of 
finite strain, Druyvesteyn and MeyeringB have obtained 
a value 'YDM for the Griineisen parameter of a solid as 
evaluated from the equation of state, which can be 
expressed as 

'YDM='YD-t, (2) 

in tenns of 'YD of Eq. (1). The presumption in their 
work is that the conflict of Eq. (2) with Eq. (1) arises 
from consideration of finite strain. Further, Druyves­
teyn9 has used Murftaghan's theorylo.lI of finite strain, 
with some drastic assumptions, to evaluate the Griinei­
sen parameter of a solid in terms of its Poisson ratio 
alone. In later work,12 however, he pointed out that 
values of the Griineisen constant obtained from 
Griineisen's law show only poorly the predicted 
correlation with Poisson ratio; hence, this result of 
Druyvesteyn will not be considered further in what 
follows. 

Of late, this question of the possible effect of finite 
strain has been reopened by Dugdale and MacDonald.13 

These authors point out that Eq. (1) yields a value 
'YD=! when applied to the equation of state of a solid 
which they believe should show no thermal expansion; 
since 'YD does not vanish, Griineisen's law implies a 
thermal expansion. Dugdale and MacDonald ascribe 
the paradox to neglect of finite strain in the derivation 
of Eq . (1). They attempt to resolve the paradox by 
postulating (apparently without formal derivation from 
the theory of finite strain) an expression for the Griinei­
sen 'parameter as evaluated from the equation of state, 
which coincides with Eq. (2) of Druyvesteyn and 
Meyering at zero pressure, and thus yields a vanishing 
Griineisen parameter for the case in question. 

The infinitesimal theory of elasticity describes an 
isotropic solid by means of two elastic parameters, 
which can be taken as the;two Lame constants or as the 
bulk modulus and the Poisson ratio. These coefficients 
yield directly the values of such derivatives as ap lav 
or a2El av2, where E is the total energy. To evaluate 
the corresponding higher derivatives, the formal theory 
of finite strain introduces three additional coefficients 
for an isotropic solid, which can be taken a~ till: three... 

rillo in14 .15 or the three Murnaghan1o .1I parameters. 
These parameters yield dIrect y the va ues of such 
derivatives as a2Pl av2 or a3Elav3• Since Eq. (1) 
contains a2 Pia 1"2, though not expressed in terms of 

7 P. Duhem, Ann. Ecole Norm. 23, 169 (1906). 
81\[. J. Druyvcsteyn and J. L. Meyering, Physica 8,851 (1941). 
9 M. J. Druyvesteyn, Physica 8, 862 (1941). 
10 F. D. l\[urnaghan, Am. J. Math. 59, 235 (1937). 
II F. D. Murnaghan, in Applied Afec/Jallics, Theodore von 

Karlllan Anniversary T'olllme (California Institute of Technology, 
Pasadena, 1941), p. 121. 

12:\1. J. Druyvesteyn, Philips Research Rept. 1, 77 (1946). 
13 J. S. Dugdale and D . K. C. MacDonald, Phys. Rev. 89, 832 

(1953). 
1'L. Brillouin, Ann. phys. 3, 267, 328 (1925). 
1. L. Brillouin, Les Tenseurs e11 11{ ecaniqllP et en Elasticite 

\lasson et ('ie. , Paris, 1949), Chaps. 10-12. 

Brillouin or Murnaghan parameters, it involves 
consideration of finite strain. Hence, Eq. (1) for the 
Griineisen parameter on the Debye model should 
contain no restriction to infinitesimal strain (a point 
which has also been made by SlaterI6). 

In this paper, Eq. (2) for 'YDM will be derived without 
recourse to the formal mechanics of the theory of finite 
strain. The derivation brings out clearly the area of 
physical validity of the result; it applies to a model of 
independent pairs of nearest neighbor atoms. Druyves­
teyn and Meyering obtained the expression by virtue 
only of tacit limitation to such a solid. Hence, the 
difference between ECJs. (1) and (2) lies in the model 
employed. The former equation corresponds to a 
Debye solid, in which coupling of the vibrations of the 
individual atoms is taken into account. These considera­
tions yield an immediate resolution of the paradox of 
Dugdale and :l\1acDonald. 

Murnaghan has reduced the theory of finite strain 
to a form very tractable for physical applicationsP 
The consistency of his results with the very extensive 
earlier work has been shown by Truesdell.1B The 
formalism of the illurnaghan theory will be used in 
this paper to derive the value of the Griineisen 
parameter under fmite strain, as evaluated from the 
equation of state for a Debye solid, on the basis of an 
assumption corresponding to that of constant Poisson 
ratio. The result is identical with that of Eq. (1), as 
one should expect on the usual assumption that the 
preSence of a unifonn finite pressure affects the velocities 
of elastic waves of infinitesimal amplitude only through 
its effect upon the density and the elastic parameters. 
In point of fact, this assumption has been justified by 
Biot19 on his formulation of the theory of finite strain, 
by a general argument. The value of Eq. (2) is found 
for the Griineisen parameter of a Druyvesteyn-Meyer­
ing solid under finite strain. 

II. HARMONIC SOLIDS 

A harmonic solid is one in which the thermal behavior 
can be represented by a set of lattice oscillators whose 
Hamiltonian H is 

(3) 

where the range of i corresponds to all normal modes of 
oscillation, Pi is the generalized momentum correspond­
ing to the oscillator coordinate qi, and Vi is an oscillator 
frequency. The Griineisen parameter 'Y of the solid is 
defined by 

'Y= -a Inv/a InV, (4) 

on the Griineisen postulate that all lattice frequencies 

14 J. C. Slater (private communication). 
17 F. D. Murnaghan, Finite Dejorlllatio11 oj an Elastic Solid 

(John Wiley and Sons, Inc., New York, 1951), Chap. 4. 
18 C. Truesdell, J. Rational Mech. and Anal. 1, 173 (1952). 
18 M. A. Biot, J. Appl. Phys. 11,522 (1940). 
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y. vary with volume in the same manner.20 The thermal 
pressure PI of the lattice is given by 

(5) 

where the thermal energy EI of the lattice is defined by 

E I = (L:,-tN)A'+ (L: .. 27r2
11,2ql)A', (6) 

in which the averages of the kinetic and potential 
energies which appear must be computed from quantum 
statistical mechanics. The volumetric coefficient ex of 
thermal expansion for a harmonic solid can be found 
from Grtineisen's law 

(7) 

in which K is the bulk modulus (inverse compressibility) 
and C v is the heat capacity at constant volume. This 
result follows directly from Eg. (5), on the Grtineisen 
assumption that 'Y is a function only of volume. 

The thermal oscillators, whose coordinates appear 
in Eq. (3) for H, may be the virtual oscillators of the 
acoustic field as in a Debye solid (which shows a 
spectrum of frequencies), or they may be material 
oscillators, as in the Druyvesteyn-::\Ieyering solid 
(where only one frequency appears) discussed below. 
Such harmonic solids stand in contrast to the an­
harmonic solids treated by Born and Brody,21 or by 
Hooton.22 

A. Debye Solid 

For purposes of later reference, a prefatory discussion 
of a Debye solid will be given . 

The Debye frequency liD of an isotropic monatomic 
solid is defined by 

(8) 

where.IV is Avogadro's number, V is the atomic volume, 
and Cz and Ct are the velocities of longitudinal and 
transverse elastic waves, respectively; this definition 
corresponds to the Debye assumption of an average 
wave velocity for the two types of waves. The wave 
velocities are given for an isotropic solid by 

(9) 

if p is the density and A and JL are the Lame parameters. 
The definition of the bulk modulus by 

K=- vap/av (10) 

yields the result 
(11) 

on the infinitesimal theory of elasticity. Use of this 
relation and the definition, 

(12) 

., E. Griineisen, in Handbuclt der Physik (Verlag Julius Springer. 
Berlin, 1926), pp. 1-59. 

11 M. Born and E. Brody, Z. Physik 6, 132 (1921). 
D D. J. Hooton, Phil. Mag. 46,422,433 (1955). 

of Poisson's ratio u permits one to write ECI. (~ ) , in 
the form of I and II, as 

(13) 

where M is the atomic weight and SD(U) is defined by 

Thermodynamic functions on the Debye model, such 
as the thermal energy EI of Eq. (6), are given directly 
by standard results23 in terms of hVJ)/kT, where It 
and k are the Planck and Boltzmann constants respec­
tively, and T is the absolute temperature. 

To satisfy Grtineisen's postulale,2o that all the 
frequencies vary with volume in the same manner, it is 
essential that the Poisson ratio u be constant; otherwise 
the frequencies of the longitudinal and transverse 
waves show different variations.3 With this assumption, 
use of Eq. (13) in Eq. (4) yields 

'YD= -t- ta InK/a In!" (15) 

for the Grtineisen parameter 'YD on the Debye model. 
This form for 'YD is essentially that of Lorentz; by Eq. 
(10), it is equivalent to Eq . (1) of Slater, which, one 
notes, does not contain explicitly the Lame parameters 
A and J.l. characteristic of the infinitesimal theory of 
elasticity. 

It is common in the theory of elasticity of solids to 
consider only adiabatic and isothermal processes, in 
which cases a strain-energy function can be defined24 ; 

thus, the distinction between the energy and the 
Helmholtz free energy will be ignored, in general. 
It is known that the bulk modulus for a solid can be 
taken indifferently as adiabatic or isothermal at low 
pressure,25 and the result for a solid at high pressure 
follows from the Thomas-Fermi atomic model, for 
temperatures low in the sense of the model.26 Hence, 
qualification of a partial derivative with respect to 
volume as adiabatic 01' isothermal will be omitted, on 
the basis above, and on the basis of Grtineisen's 
assumption that the characteristic frequency is a 
function only of volume. 

B. Druyvesteyn-Meyering Solid 

In this section, the Griineisen parameter given by 
Druyvesteyn and lHeyering will be obtained from an 
atomistic model. Consider a monatomic solid with a 
simple cubic lattice. Assume that each atom shares a 
bond with each of its six nearest neighbors, and wilh 
no neighbors more remote~ Let each bond be represented 

23 J. E. Mayer anti M. G. Mayer, Statistical Meclllmics (John 
Wiley and Sons, Inc., New York, 1940), pp. 243, 251. 

24 A. E. H. Love, A Treatise 011 the }"f aliIelllatical Tltevrv of 
Elasticity (Dover Publications, New York, 1944), fourth edition , 
pp. 94, 99, 104. 

26 H. JefTreys, Proc. Cambridge Phil. Soc. 26, 101 (1930). 
!6 J. J. Gi lvarr.v. Phys. }{ev. 96, 934 (1954). 
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by an oscillator consisting of the two atoms connected 
by a nonlinear spring along their join, and assume that 
each such oscillator is independent. The CrUneisen 
parameter for such a solid of independent pairs of 
nearest-neighbor atoms will be obtained by extension of 
a method given by l\.1adelung27 and Einstein28 to 
evaluate the characteristic frequency of a solic! in terms 
of its clastic parameters. The model in question is 
equivalent to one in which each bond is replaced by a 
diatomic molecule. It is clearly artificial, but not 
entirely so; Slater3 has pointed out the similarity 
bet ween the metallic bond and the homopolar bond, 
and has used the Morse potential for the interatomic 
potential in a metal to obtain values of the Griineisen 
constant showing reasonable agreement with values 
from Grilneisen's law. 

The volume variation of the frequency v of a single 
bond oscillator is given to first order, from Eq . (4), by 

v= vD.u[I-'YDM(V - Vo)/VoJ, (16) 

where 'YD.11 is the corresponding Griineisen parameter, 
VD.1f is a constant frequency, and Vo is the normal value 
of the volume V. Since the volume per atom for a 
simple cubic lattice is r3 in terms of the interatomic 
distance r, one obtains 

v= vD.lr[1-3'Ymf(r-ro)/roJ, (17) 

if ro is the normal value of r; note that the nonlinear 
spring forming a bond is such that increase of its length 
r lowers its force constant. The independent oscillation 
corresponding to a bond takes place with the center of 
mass of the two atoms fixed. Using reduced coordinates, 
one can express the total potential energy 11 of this 
oscillator of variable frequency (and force constant) as 

11= 7r2mvD.1f2(r-ro)2[1- 2'YDM(r- ro)/roJ, (18) 

if m is the mass of an atom. 
The change E- Eo in the total energy of a solid on 

compression can be expressed as a Taylor series through 
third-order terms in the volume change as 

1 Ko 
E-Eo=--(l'- Vo)2 

2 Vo 

X{I+~[(alnK) _1]V-VO}, 
3 alnV 0 l ro 

(19) 

by means of Eq. (10), if Eo, K o, and the partial deriva­
t ive represent values corresponding to the normal 
volume 1'0. For the model of a solid in question, the 
"'ork of compression can be viewed as expended 
against the potential energy of the independent bond 
oscillators. For .1,' atoms in volume V, one obtains 

E-Eo=3N1'(', (20) 

2' E. :'I[addung, Physik. Z. 11,898 (1910). 
28.\ Ein,tcin, Ann. Physik 34, 170,590 (1911) . 

if l' is the energy of a single oscillator (since a unit cell 
of a simple cubic lattice corresponds to one atom and 
has twelve edges, each of which is common to four 
unit cells). Taylor expansion of V=Nr yields 

3 {[ (a InK) ]r-ro} n=-K01'ol(r-ro)2 1+ 1+ -- --
2 a In V 0 ro 

(21) 

from Eqs. (19) and (20), if Vo is the normal volume per 
atom corresponding to the normal value ro of r. 

Comparison of the leading terms of Egs. (18) and 
(21) for 1t yields the form 

(22) 

with SDM = 31/2/21/271', for the characteristic frequency of 
a solid of independent pairs of nearest neighbor 
atoms. In his evaluation of the characteristic frequency 
of a solid from elastic parameters, Einstein obtained 
the somewhat dilTerent value ('IT/6) 1/3 (31/2/21/271') for 
the coefficient corresponding to SD,U, by taking into 
account the presence of 26 neighbors of each atom in a 
simple cubic lattice. If N is Avogadro's number and 
Vo the normal atomic volume, Eq. (22) yields 

"D.l(= SD.U.Yl/3M-I/2Kol/2VOI/6, (23) 

which corresponds to Eq. (13) for the Debye fre­
quency.29 

A corresponding comparison of the second terms of 
Eqs. (18) and (21) for u yields 

'YD.lf= -t[l+(a InK/a InV)oJ (24) 

for the Griineisen parameter of a solid of independent 
pairs of nearest-neighbor atoms. This expression 
differs from 'YD of Eq. (15) by -L it is identical with 
the result of Druyvesteyn and Meyering, and agrees 
with the result of Dugdale and :MacDonald for zero 
pressure. Note that no use of the formal theory of 
finite strain has been made in the derivat!on. 

On the assumption of independent bond oscillations, 
the thermal expansion of the lattice can be determined 
directly in the classical limit by means of the expression 

(25) 

where x=r-ro. From Eq. (18) or Eq. (21), one obtains 
Griineisen's law in the form 

(26) 

as a check on the results. Equation (25) yields a nOI1-
vanishing thermal expansion from 11 of Eq. (18) or 
Eq. (21) only because of existence of the anharmonic 
terms, corresponding to which one obtains the ex-

29 If the value of SDM noted above is equated to sv of Eq. (14), 
one obtains u = 0.36 as the equivalent Poisson ratio, which may 
be compared with the average value 1 over the metals [C. Z,dkker, 
Physical Propl"rties of Solid M alerials (Interscience Publishers, 
Inc., New York, 1954), p. 90]. 
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presslOJl 
(27) 

obtained by Druyvesteyn and :\1 eyering from prior 
work of Ornstein and Zernike.30 

for a solid with a simple cubic lattice, in which the 
potential energy U of an atom in the interatomic 
force field is given, in terms of the interatomic distance 
r, by 

U= -.1 /1''''+15/ r'', (28) 

where ?It and It are constants, and ..1 and B arc lattice 
sums which are compu ted for pairwise interaction of 
the atom with all others (considered fixed), and which 
are constant for deformation without distortion, 
Gruneisen20 determined the characteristic frefJuency 
directly to obtain the expression 

(29) 

for the Gruneisen constant at normal volume. The 
equation of state corresponding to the potential 
energy (28) can be evaluated as 

P=3Ko(n-1II)-1[O'o/V)"f3+L (1'0/ 1") ",/3+1J, (30) 

where Ko is the bulk modulus corresponding to the 
normal volume Vo. If the bulk modulus K is determined 
from this equation, one verifies that Eq. (24) for 'YD.l1 

reproduces correctly Griineisen's value of Eq. (29) 
for the parameter at normal volume. Slater3 has given 
the value (n+6)/6 for the Gruneisen constant at 
normal volume of a solid for which m= 1 in Eq. (28); 
the difference from the value (n+..J.) / 6 corresponding 
to Eq. (29) of Gruneisen is due to the fact that Slater 
based his result on Eq. (15) for the Debye model. 

A solid of the type of Druyvesteyn and .\Ieyering 
shows thermal vibrations corresponding to the single 
frequency given by Eq. (17). Hence, thermodynamic 
functions, such as the thermal energy El of Eq. (6), 
can be expressed in terms of ltv /J.\[ / kT by making use 
of results from Einstein's theory23 of the heat capacity 
of solids. The properties discussed above, depending on 
the cubic term in the interatomic potential energy, are 
consistent with the usual thermodynamic functions 
derived directly from the partitioJl function Q= Ln 
Xexp[ - (n+!)hvDM/kT], since the energy levels of 
an anharmonic oscillator are independent of the cubic 
term within first-order perturbation theory.31 

Lattices more general than the simple cubic can be 
treated by following Slater's procedurc,3 used in his 
heuristic representation of the metallic bond by a 
diatomic molecule, of writing the volume per atom as 
cr in terms of the interatomic distance r of nearest­
neighbor atoms, where the constant ( is characteristic 
of the lattice type. In such a case, Eq. (20) remains 

30 L. S. Ornstein and F. Zernike, PHIL I<oy .. \cad. AllIsterdalll 
19, 1289, 1304 (1916). 

31 L. Pauling and E. B. WilsOll, htlruduclioll 10 Qllutlllllll .II ecJlIllI ­
us (McGraw-Hill Book Compan)', Inc., New York, 1935), 
p. 1OO, 

valid, since each oscillator introduces a generalized 
coordinate qi=r-rO to describe the solid, which has 
3.Y degrees of freedom. Taylor expansion of I' = .Yer:: 
changes the constant factor in Eq. (21) for II, however. 
For the more general lattices in question, therefore. 
the value of SD.l1 in Eq. (23) for VD.H becomes .11 ~(Ia 
21/27r, but Eq. (2-1) for 'YD.1f remains unchanged. ror 
such lattices, Gri.ineisen's law in the form (20) can he 
verified by means of Eq. (25). 

The preceding results can be generalized directly to 
the case of a simple cubic lattice where the mass of an 
atom diJTers from the common mass of its six nearest 
neighbors, as in the structure of the alkali halides. 
If the mass ratio is significantly different from unity, 
the value of SVII approaches V3/ 27r. This value is quite 
close to the corresponding coefficient, as noted above, 
obtained by Einstein; in point of fact, both :\fadelung 
and Einstein had ionic crystals of the type of the 
alkali halides in mind in their treatments. For the 
degenerate case of mass ratio very different from unity, 
the Druyvesteyn-~Ieyering solid can be viewed as a 
solid of independent (light) atoms, where the coupling 
to the heavy atoms serves the function of providing an 
interatomic force field for the light atoms. The Grunei­
sen parameter 'YDlf is independent of the mass ratio. 

C. Ideal Harmonic Solid 

An ideal harmonic solid will be defined as one ill 
which the oscillator frequencies Vi are strict constants. 
The constancy of the frequencies demands that the 
Gruneisen parameter vanish, from Eq. (4.). It follows 
from Gruneisen's law (7) that the coefficient of thermal 
expansion vanishes, and, from Eq. (5), that the thermal 
pressure PI vanishes. The latter conclusion is in 
agreement with the virial theorem, which one derives 
as32 

(L,ipnA'- (Li27r2vlql)A,=~PlV) (31) 

for an ensemble of purely harmonic oscillators; since 
the average kinetic and average potential energies 
which enter are equal, one has Pl=O. As will appear, 
the Debye and the Druyvesteyn-:\leyering models 
make different predictions on the equation of state of 
an ideal harmonic solid. 

from Eq. (2..J.) for the Gruneisen parameter of a 
Druyvesteyn-:\f eyering solid, the condition 'YD \I = 0 
yields 

"'-=Ko(Vo/V), 

1'=Ko[(Vu/V)-IJ, 

(32a) 

(32b) 

for the bulk modulus and equation of state (correspond­
ing to P=() for V= Vo) of an ideal harmonic solid on 
this model. III this case, Eq. (18) or Eq. (21) yields 
the potential energy u of a bOlld oscillator as 

u = (3/2)Kovo 1/3(r-ro)1+0[(r-ro)4J, (33) 

32 H. C. Corbf'n and P. M. Stehle, Classical A1ecll<l11ics (John 
\\ile, and Sons, Inc. , New York, 1950), p. 202, 
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where the notation O[xJ has been used for terms of 
order equal to or higher than that of x; the terms 
indicated in this manner have already been neglected in 
determining the energy levels of a bond oscillator.3! 
This potential energy contains no cuhic term; that the 
corresponding thermal ell:pansion vanishes follows 
directly from Eq. (25), within the approximation made 
in obtaining the energy levels. Through cubic terms, the 
Taylor expansion of u agrees within a proportionality 
factor with the potential energy U of Eq. (28) for 
1It= -1 and n= - 2, if A, B, and an added constant are 
selected properly. With this choice of m and 'It, Grtinei­
sen's value (29) for 'Y DM vanishes, as it should. 

For an ideal harmonic solid of Debye type, the 
condition 'YD=O yields 

K = KO(VO/V)I/3, 

p= 3Ko[ (VO/V)l/L 1], 

(34a) 

(34b) 

from Eq. (15), if K=Ko and p=o at I"=Vo. The 
equation for the bulk modulus follows directly from 
the condition that liD, as given by Eq. (13), be constant. 
As one notes, the results differ from the corresponding 
ones of Egs. (32) for a Druyvesteyn-l\Ieyering solid. 
Tn contrast to the assumption of independent pairs of 
nearest-neighbor atoms, the Debye model postulates 
coupled atomic oscillations; coupling is introduced by 
means of the continuum approximation, by which the 
actual lattice vibrations are represented by elastic 
,,·aves. Corresponding to these differences, the Grtinei­
sen parameters computed on the two models do not 
agree exactly, and the predicted equations of state for 
an ideal harmonic solid differ. 

The formal analog of Eq. (33) for an ideal harmonic 
solid of Debye type, corresponding to use of the result 
of 'Yo=O in Eq. (19), is 

E-Eo 3 [ 2 r-ro] 
--.-=-Kovo:l(r-l'o)2 1+--- +0[(r-ro)4J, 

3.\ 2 3 ro 
(35) 

for a simple cubic lattice. In spite of the fact that the 
equation contains a cubic term, one cannot use this 
result for 16 in Eq. (25) to conclude that an ideal 
harmonic solid of Debye type shows a nonvanishing 
thermal expansion, since (E- Eo)j.~:Y cannot be 
interpreted as the potential energy of all independent 
pair of nearest neighbor atoms or of an independent 
atom (for one-dimensional motion) in an interatomic 
force field, ancl the validity of Eg. (25) is restricted to 
such a case. It goes without saying that the difference 
r-rn appearing in Eq. (35) cannot be identified as the 
displacement which enters the expression for the 
potential energy of a thermal oscillator on the Debey 
model, since it is the normal coordinates qi of the 
acoustic oscillators which enter the potential energy in 
the Hamiltonian II of Eq. (3) . The eiTect of thermal 
expansion is to change the normal coordinates qi to 
new "alues q/, where both show mean value zero, and 

to change the frequencies IIi to new values v;' given by 

(36) 

which minimize the Helmholtz free energy, as Peierls3.1 
shows. Thus, EC]. (35) represents a purely formal 
expansion for a Dehye solid. 

Dugdale and l\IacDonaldl3 consider a solid in which 
the potential energy cf> per nearest-neighbor pair of 
a toms is such that cf> 0:: (R - RO)2 in terms of the difference 
of the distance R between the pair from its normal 
value Ro. At zero temperature, the total internal energy 
in this case is proportionaP! to (Vl/3- VOI/3)2. Dugdale 
and MacDonald identify such a solid as an "ideal 
harmonic body" (this definition does not coincide 
with the definition of an ideal harmonic solid used in 
this paper). These authors note that computation of 
the pressure at T= 0 from this total energy yields 
'YD= t from Eq. (15) at zero pressure; since they assume 
that the body in question has no thermal expansion, 
they view this nonvanishing Grtineisen parameter as 
a paradox. However, even though the restoring force 
along a bond is strictly proportional to bond extension, 
resolution of the restoring forces of the bonds on the 
crystal axes introduces terms containing trigonometric 
factors in the corresponding components of the restoring 
force on an atom, in general. since the atoms are 
coupled. This effect introduces anharmonicity in the 
vibration of an atom in the two- or three-dimensional 
case, and thus a thermal expansion, as correctly 
predicted by the Debye theory. To suppress this 
behavior, one must imagine the nearest neighbor pairs 
of atoms as independent, in which case the body is a 
Druyvesteyn-~Ieyering solid with an internal energy 
proportional to 11 of Eq. (33), and EC]. (24) for 'YD.1f 

correctly yields 'YD.\(=O at zero pressure. Note that the 
effect in question does not exist for the linear chain, 
where the restoring forces of all bonds are in the same 
straight line; in agreement with the discussion of 
Dugdale and MacDonald, one verifies independently 
that 'YD.lT and 'YD are identical in this case.3:; 

It is clear, accordingly, that the paradox of Dugdale 
and MacDonald. arises only by imputing to a Debye 
solid properties which belong to a Druyvesteyn­
:Meyering solid. 

III. CASE OF FINITE STRAIN 

In the following, the presence of a state of finite 
hydrostatic pressure, upon which elastic waves or 

sa R. E. Pcierls. Qualltl/m Theory (,f Solids (Oxford University 
Press, London, 1955), p. 31. . 

:J.t Strictly, the validity of this expression for the enc.rgy IS 

incompatible with a simple cubic lattice for nearest-neIghbor 
interactions only, since no rigidity exists in this case; in ~uch a 
lattice, this expression is changed by distortion of a cubIC cell 
into a rhomboid, but the energy is unatTectcd since no bon.ds 
change in length. Hence, for a cubic lattice, the result apphes 
without qualification only in the body- or face-centered casco . 

a& The author is indebted \0 Dr. \Y. G. ;o.fc;\lillan in connectIOn 
w:th the argument of this paragraph . 
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pressure changes of infinitesimal amplitude are impres­
sed, will be taken into account explicitly by means of 
the formal theory of finite strain, to justify Eq. (1) 
for a Debye solid and Eq. (2) for a Druyvesteyn­
~leyering solid. Thus, any restriction in the preceding 
discussion to the case of infinitesimal strain will be 
lifted. 

A. Debye Solid 

For finite deformation, under hydrostatic pressure 
alone, of an isotropic elastic solid about the arbitrary 
point (V1,P1) on its pressure-volume curve, Murnaghan 
has shownl7 that the change P-P1 in pressure of the 
silid from the point (V1,P1) to the point (V,P) is given 
by a Taylor series through second-order terms in a 
parameter e as 

P-P I = (3A+2J.L+Pl)e 
-t(181+2n-6A--±J.L-3PI )i\ (37) 

where A and J.L are Lame parameters evaluated at the 
point (VI,P1), and I and It are Murnaghan parameters 
corresponding to the same point. The variable e IS 

connected with the volumes by the exact relation 

(38) 
which yields 

by a power-series expansion. 
From the definition (10) of the bulk modulus K, 

Eq. (37) yields 
K=Kl-3(VaK/aV)le, (40) 

where 
K1=A+iJ.L+sp1, (41a) 

(VaK/aV) I =21+ (2/9)n- (1/9)PI' (41b) 

One notes that inclusion of the second-order term in 
Eq. (37) for P makes the graph of 1'- PI against the 
dilatation (V - V1)/V 1 a parabola, instead of the straight 
line corresponding to the first-order term in e. The 
presence of the finite pressure introduces the correction 
term PI to 3A+2J.L in the first term of Eq. (37) for 
P-P1, which, by Eq. (41a), changes the physical 
interpretation of the Lame parameters in terms of the 
bulk modulus at finite pressure, as compared to the 
interpretation of Eq. (11) for infmitesimal pressure. It 
must be emphasized that the Lame parameters A 
and 11-, and the Murnaghan parameters I and n, are 
functions of PI, in general. 

By a fundamental theorem of ~lurnaghan,17 an 
elastic body which is initially isotropic remains so 
when subjected to a finite strain due to hydrostatic 
pressure alone; the initial state (VI,l-'I) aLove must be 
produced in this manner. If a general infinitesimal 
stress is superposed in this situation, the body remains 

approximately isotropic. Hughes and Kelly36 have 
extended a prior result of Murnaghanl7 to sho\\" that 
the response of the solid to the superposed infinitesimal 
stress in this case is completely specified by two 
generalized Lame parameters Land M, in a manner 
entirely analogous to the specification by A and J.L in 
the infinitesimal case. The values of Land M are given 
by . 

L=A+PI- (61-2m+n-2A- 211--PI)e, (-12a) 

M = 11--1\ - (3m- !n+3A+3J.L+ P1)e, (42b) 

in which nt, like I and tt, is a l\[urnaghan parameter 
evaluated at (VI,P1). 

The speeds C l and C t of longitudinal and transvcrse 
waves, respectively, of infinitesimal amplitude super­
posed on a state of finite strain due to hydrostatic 
pressure, are given by equations analogous to Eqs. (9) 
in the infinitesimal case, as 

where p is the density corresponding to the volume V. 
Hughes and Kelly give expressions for Land M which 
omit terms in PI, since these authors referred the body 
to an initial state of zero pressure, for experimental 
purposes. If use is made of the relation p=po(1+3e) 
obtained from Eq. (39), for p in terms of an initial 
density Po, Egs. (43) reduce to the corresponding 
expressions of Hughes and Kelly for PI = 0, and agree 
with the corresponding relations of Brillouin. 

With K given by Eq. (40), the values of Land Jv[ 

satisfy the relation 

K=L+iM, (44) 

analogous to Eq. (11) in the infinitesimal case. The 
expression (12) for the Poisson ratio in the infinitesimal 
case must be replaced for finite strain by a generalized 
Poisson ratio 1: defined by 

(45) 

The stability conditions24 K, M:2: 0 require that 
~::::;t and one obtains ~---ta in the limit PI, P---tO. 
With introduction of ~, the response of the solid under 
finite strain to a superposed infinitesimal stress of 
general type can be described completely by the I wo 
parameters j{ and 2:, instead of Land M. 

Use of Eqs. (-1-+) and (45) in the analog of Eq. (8 ) 
obtained by rc])laring cland Ct by Cland C

" 
respectively, 

yields 
(-!6) 

for the Debye frequency /lD, where S=Sf)(2:) in terms 
of Sf) of Eq. (l-t). Corresponding to the case of Sec. 
IIA, it is necessary that 2: be constant to satisfy the 
CrUneiscll postulate that the frequencies of the longi­
tudinal and transverse waves show the same volume 
variation. Under this assumption, the delinition (-! ) 

36 D. S. Hughes and J. L. Kelly, Phys. Rev . 92, 1145 (l953l. 
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FIG. 1. The generalized Poisson ratio 2: as a function of pressure for 
polystyrene and for Pyrex glass, from data of Hughes and Kelly. 

yields Eq. (15) for the Griineisen parameter on the 
Debye theory, which is the result obtained without 
use of the formal theory of finite strain. By application 
of Eq. (15) at the point (VI,PI), with use of Eqs. (41), 
the expression for 'YD becomes 

in terms of Lame and Murnaghan parameters. 
For an ideal harmonic solid of Debye type, the 

requirement that 'YD of Eq. (15) vanish yields 

(48) 

as the corresponding equation of state, if the constant 
of integration is evaluated at the point (VI,PI). One 
recovers ECj. (3-!b) if use is made of Eqs. (3-!) to relate 
Kl and 1\ to the bulk modulus [(0 at the normal volume 
Vo; thus the equation of state shows a transitivity 
property. Use of the same relations for ]{I and PI in 
Eq. (41a) yields 

(-!9) 

so that the combination of Lame parameters on the 
left is a constant. From Eq. (41b), one obtains 

6l+~n= -[(0, (50) 

in which the combination of l\Iurnaghan parameters is 
constant. The last equation imposes no restriction on 
the second-order coefficient m; this parameter mllst be 
chosen as a function of volume so that ~ of Eq. (45) 
has the value CT, which must be taken as a constant, so 
that the Griineisen postulate is satistied for the fre­
quencies. Accordingly, the Lame parameters A and J.I. 

have constant values separately for an ideal harmonic 
solid of Debye type. 

The iact that the Lame parameters are constant for 
an ideal Debye solid means that the equation of state 
is identical with that obtained by :,[urnaghan'7 on 

the linear theory of finite strain. The equation of state 
given by l\lurnaghan, corresponding to the "integrated 
linear theory of finite strain," which was used in III 
to derive the Simon equation for the fusion curve, 
reduces to Eq. (3-!b) if the Gri.inesisen parameter of the 
solid on the fusion curve vanishes. One notes that the 
sign of the combination of 1\Iurnaghan parameters in 
Eq. (50) is negative, which is agreement with the 
general results of measurements of these parameters 
made by Hughes and Kelly on various solids. The 
signs of the second-order coefficients were predicted by 
Brillouin to be negative in general, as is necessary if the 
wave velocities increase with pressure. 

As a check on the assumption of constant ~, values 
of this parameter from experimental results of Hughes 
and Kelly for polystyrene and for Pyrex glass are 
shown in Fig. 1, as a function of pressure. Comparison 
of Fig. 1 with Fig. 1 of I and Fig. 1 of II shows that the 
assumption is fulfilled reasonably as compared to the 
corresponding assumption on CT. 

B. Druyvesteyn-Meyering Solid 

For the change E-JiJ in total energy of a solid from 
the point (Vt,P I ) to the point (V,P) under a change in 
hydrostatic pressure,:\ r urnaghan has given the 
expression 17 

E- E t = Vt[3Ple+ (3/2) (3A+2J.1.)eL (91+n)e3J, (51) 

which, as one verifies, yields Eq. (37) for P- PI, with 
use of Eq. (38). By means of the expansion (39), 
one obtains 

E-EI= -P1(V- VI )+H3A+2/-L+Pt) 
X (l" - V I )2/V1+ (1/54) (181+2n-9A 

-6J.1.-4Pt)(V- V1)3/V 12. (52) 

The first term in this expression is an energy of compres­
sion whose presence ensures that - (aEjaV)I=PJ, 

corresponding to the fact that the total energy of the 
solid cannot possess a minimum at (V I,PI) unless 
PI=O. For a Druyvesteyn-?lIeyering solid of N atoms 
in volume l', the remaining energy of compression can 
be represented as the potential energy of 3N independ­
ent bond oscillators of potential energy 1t by 

(53) 

which replaces Eq. (20) in the infinitesimal case. In 
contrast to E, 11 is such that (an/anl=O, corresponding 
to the fact that the potential energy of an oscillator 
must possess a minimum at (V!,P 1). 

The definition (4) of the Gri.ineisen parameter yields 

1I=IIDM[1-3'YD.ll(r-rt)/ rl] (54) 

for the frequency /J of a bond oscillator, if '1 is the 
value of the interatomic distance, corresponding to 
the point (VI,P 1); this expression replaces Eq. (17) in 
the infinitesimal case. The corresponding potential 
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energy It of the oscilla tor becomes 

1t= 7r2mIlDM2(r- r1)2[1- 2'YDM (r- r1)/r1J, (55) 

analogous to Eq. (18) . By means of Eqs. (52) and (53), 
an alternative expansion of u in powers of r-r1 can 
be obtained . Comparison of t he result with u as defined 
by Eq. (55) yields 

liD.\! = SDM.\Tl /3.M-I12J( 11 12 V1
l / 6 (56) 

as the characteristic frequency, if note is taken of 
Eq. (41a), and yields 

'YDM= -!-t(181+21l-PN (3;\+2JL+Pl) (57) 

directly as the corresponding Gruneisen parameter in 
terms of Lame and Murnaghan parameters. One 
obtains 

'YDA! = - .~ [1 + (a InK/ a In V) IJ (58) 

from Eqs. (41); this result corresponds exactly with 
Eq. (24) obtained for zero pressure. By direct use of 
Eq. (25) to calculate (r-rl )AV, one can verify Grtinei­
sen's law under finite strain. The analog of Eq. (27) 
becomes 

(59) 

which, with reference to Eq. (57), brings out a point 
emphasized by Druyvesteyn and Meyering, that the 
anharmonic term in the potential energy of an atom in 
the interatomic force field is a function of the second­
order elastic coefficien t s. 

For an ideal harmonic solid of Druyvesteyn-Meyering 
type, integration of the relation 'YDM=O for an arbi­
trary point and evaluation of the constant of integration 
at the point (V 1,P1) yields 

(60) 

as the equation of state. This expression reduces to 
Eq. (32b) by use of Egs. (32) to evaluate KI and P1; 
thus the equation of slate shows a transitivity property 
(as noted for t be corresponding Debye solid). Note, 
that;\+ (2/ 3)JL must be such a function of pressure that, 
Eqs. (32a) and (41a) are satisfied simultaneously. 
For u in the case of this ideal solid, one obtains an 
expression corresponding exactly to Eq. (33), from 
which direct use of Eq. (25) to compute (r-rl )AV yields 
a vanishing thermal expansion. 

IV. COMPARISON WITH EXPERIMENTAL DATA 

It is clear from the foregoing tha t the two evaluations, 
'YD and 'YMD, for the Grtineisen parameter as evaluated 
from the equation of state, correspond to two different 
models. That both models represent approximations 
follows from the more refined analysis of Barron,37 
and from considerations noted by Slater3 and Zener38 

in .connection with the Debye model. However, from 

87 T. H. K. Barron, Phil Mag. 46, 720 (1955) . 
18 C. Zener, Flasticity and AlIelasticity of Met;)is (University of 

Chicago Press, Chicago, 1948), p. 3D, 

TABLE 1. Comparison of average Grlineisen c()nstan(~ [mn', 
equation of state and from Grlineiscn's la\\' , 

) 

(Grtinf' i"cl1 
)D 'YDM' 1'm. D ), m,DH 13\\') 

Average of 
19 elements 1.9," 1.5p" 1.96b 

Average of 
14 elements 1.8< 1.5c 1.8" 

• Values for 10 elements (Mn, Fe, Co, Ni , Cu. Pd, Ag, W, Pt. a nd Pb) 
from Slater (referen ce 3); values for 9 elements (Li. Na . K. Rh. Cs, AI. Au, 
Mo. amI Ta) from G II-'arry (reference 39). 

b Values from Griineisen (reference 20), revised in the cases of the alka li 
meta~s and of AI, Au, Mo. and Ta to correspond to in ('ompr('s~ibilitics gin' ll 
by GIlvarry (re ference 39). 

'From Table V of [ (values for Ga. Bi, and Sb excluded). 

th~ artificial nature of the Druyvesteyn-.:\leyering 
sohd as compared to the Debye model, one expects 
'YD to represent a better approximation than 'YOM· 

Dugdale and MacDonald state that use of 'YDM, as 
against 'Y D, improves slightly the over-all agreement of 
values of the Grtineisen constant from the equation 
of stale and from Grtineisen's law, for the elements in 
Slater's tabulation.3 However, this tabulation shows 
large deviations in the two evaluations of the constant 
for the three alkali metals included and for some 
relatively incompressible metals (Au, 1\10, and Ta). 
A redetermination by the author39 of compressibility 
parameters for these elements (with inclusion of Rb 
and Cs) from more recent experimental data of Bridu­
man reduced the discrepancies in these cases so th~t 
the contention of Dugdale and MacDonald ~ould not 
be maintained. 

One should expect the inevitable experimental 
inaccuracies to cancel to a significant extent in a 
comparison of the averages for a reasonably large 
number of elements, of evaluat.ions of the Gruneisen 
constant on particular models. In Table I, average 
values for 19 elements of 'YD and 'YDM, as obtained from 
th.e equation of state for zero pressure, are compared 
With the corresponding average obtained with use of 
thermal parameters from Grtineisen's law (7); one notes 
t hat agreement of 'YD with the value from Gruneisen's 
law, shown in the last column, is excellent. An everage 
value for 14 elements is shown likewise for the Grtineisen 
constant 'Y m . /) of the solid at fusion, given in I as 

'Ym.D=i+!qK m.1V/ L, (61) 

where K", is the bulk modulus of the solid at melting, 
.1 V and L are the volume change and latent heat of 
fusion, respectively, and q is a parameter of the order 
of unity. This equation has been derived in I on the 
basis of Eq. (15) for the Grlineisen parameter and thus 
is valid on the Debye theory; the corresponding value 
'Y",.DM for a Druyvesteyn-Meyering solid is 'Ym. D-~. 
The agreement shown by the table is exact, within 
t.he accuracy of the data, between 'Y 1/1 D amI the corre­
sponding value derived from applica tion of Gruneisen's 

39 J. J. Gilvarry, J. Chern. Phys. 23 , 1925 (1955). 
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law to the solid at the melting point. These data 
suggest that the assumptions underlying the evaluation 
of the Grtineisen parameter from the equation of state 
on the Debye model are met reasonably well by 
elementary solids, on the average. 

V. CONCLUSION 

The results obtained show that formal consideration 
of finite strain leaves the evaluation of the Grtineisen 
parameter from the equation of state unaltered, for 
either a Debye solid or a Druyvesteyn-l\Ieyering solid. 
Hence, no reason exists on the basis of the theory of 
finite strain for the arbitrary modifIcation in the 
evaluation of the parameter for a Debye solid, as 
proposed by Dugdale and MacDonald. This statement 
presupposes that the wave amplitudes of the lattice 
vibrations are infinitesimal. It is not denied that an 
intrinsically anharmonic theory, such as that of Born 
and Brody21 or of Hooton,22 may demand revision of 
the value of the Grtineisen parameter as determined 
from the equation of state, but such a model likewise 
requires revision of the value of the characteristic 

frequency, as fixed by Eq. (8) on the Debye theory. 
Underlying the definition of the Grtineisen parameter 
is the postulate that all lattice frequencies vary with 
volume in the same manner; it is not obvious, a priori, 
that this requirement can be met within the framework 
of an essentially anharmonic theory. 

The development of I, II, and III is based on the 
Debye-Waller theory derived from the Debye model, in 
contrast to the original Lindemann theory based on an 
Einstein model. Since the form of Grtineisen parameter 
taken in the papers in question corresponds to the 
Debye theory, it is felt that in this respect the results 
have been justified fully. 
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Auger Electron Emission in the Energy Spectra of Secondary Electrons 
from Mo and W 

G. A. HARROWER* 

Bell Telephone Laboratories, Murray Hill, New Jersey 

(Received October 10, 1955) 

With the aim of determining to what extent the energy distribu­
tion of secondary electrons from targets of Mo and W may contain 
fine structure, measurements have been made using primary 
energies from 100 to 2000 electron volts. An electrostatic analyzer 
of the 127-degree type having an experimentally determined 
resolution of one percent was used . Observations of the pressure 
in the vacuum system, after heating the target above 2000 0 K and 
cooling to room temperature, showed that an energy spectrum 
could be recorded before formation of the first monolayer of 
contamination on the target surface. 

Energy distribution measurements revealed: (1) Several sub­
sidiary maxima at fixed dilTerences in energy from the primary 
mergy, these difierences being characteristic of the target material 
and inrkprnd('nt of the primary energy itself. (2) Several sub-

I. INTRODUCTION 

T HE general shape of the energy distribution of 
secondary electrons from a metal target is that 

of a smooth curve whose two principal features are a 
large maximum of slow secondaries occurring near two 
or three volts and a sharper, usually smaller maximum, 
caused by elastically reflected primaries. Furthermore, 
several workers have observed some fine structure in the 

* Xo\\' at the Department of Physics, Queen's University, 
Kingston. Ontario, Canada. 

sidiary maxima in the energy distribution at fixed positions along 
the energy scale lying between 10 and 500 electron volts, charac­
teristic of the target material, and independent of the primary 
voltage. The maxima described in (1) are considered to be primary 
electrons reflected after sulTering discrete losses of energy to the 
target. These discrete losses are believed to indicate the positions 
of the higher energy levels of the target material. The ma.'l(ima 
described in (2) are interpreted as Auger electrons. Combining the , 
energy level values determined from the discrete loss measure­
ments with energy values for the deeper lying levels available 
from x-ray studies, it is possible to predict the energies with which 
Auger electrons might be expected to be emitted. Some of the 
predicted energies for Auger electrons agree reasonably well with 
with the energies observed experimentally both for Mo and for W. 

energy spectrum of secondaries from a number of dif­
ferent metals. Rudberg,I studying Cu, Ag, and Au, 
reported inelastic reflection of primary electrons that 
had suffered discrete losses of energy, these losses being 
independent of the primary energy and characteristic 
of the target material. Haworth2,3 made similar observa­
tions for targets of Mo and Cb but observed further that 

1 E. Rudberg, Phys. Rev. 50, 138 (1936). 
2 L. J. Haworth, Phys. Rev. 48, 88 (1935). 
3L. J. Haworth, Phys. Rev. 50, 216 (t936). 


	Gilvarry, J.J.-7777_OCR
	Gilvarry, J.J.-7778_OCR
	Gilvarry, J.J.-7779_OCR
	Gilvarry, J.J.-7780_OCR
	Gilvarry, J.J.-7781_OCR
	Gilvarry, J.J.-7782_OCR
	Gilvarry, J.J.-7783_OCR
	Gilvarry, J.J.-7784_OCR
	Gilvarry, J.J.-7785_OCR
	Gilvarry, J.J.-7786_OCR

